Seiberg Witten Invariants of Rational Homology 3-spheres

نویسندگان

  • LIVIU I. NICOLAESCU
  • L. I. Nicolaescu
  • SW
چکیده

In 1996 Meng and Taubes [16] have established a relationship between the Seiberg– Witten invariants of a (closed) 3-manifold with b1 > 0 and the Milnor torsion. A bit later Turaev, [29, 30], enhanced Meng–Taubes’ result, essentially identifying the Seiberg–Witten invariant with the refined torsion he introduced earlier in [27]. In [29] Turaev raised the question of establishing a connection between these two invariants in the remaining case, that of rational homology spheres. Around the same time, Lim [12] succeeded in providing a combinatorial description of the Seiberg–Witten invariants of integral homology spheres. Namely, in this case they coincide with the Casson invariant. In [19] we investigated a special class of rational homology spheres, the lens spaces, and we proved that the Seiberg–Witten invariants of such spaces are determined by the Casson–Walker invariant and the Reidemeister–Turaev torsion in a very explicit fashion. In that paper we also raised the question whether this is the case in general. Recently Marcolli and Wang [15] (see also the related work of Ozsváth–Szabó [23]) have shown that the Seiberg–Witten invariants of a QHS determine the Casson–Walker invariant. Additionally, they have proved a very general surgery formula involving the Seiberg–Witten invariants. The main result of the present paper is Theorem 2.4 where we prove that for rational homology spheres we have

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seiberg-Witten invariants of rational homology 3-spheres. Part I

2 Seiberg-Witten invariants of closed 3-manifolds 9 2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The case b1 > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 The case b1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 The case b1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Surgery Formula for Seiberg–witten Invariants of Negative Definite Plumbed 3-manifolds

We derive a cut-and-paste surgery formula of Seiberg–Witten invariants for negative definite plumbed rational homology 3-spheres. It is similar to (and motivated by) Okuma’s recursion formula [27, 4.5] targeting analytic invariants of splice-quotient singularities. Combining the two formulas automatically provides a proof of the equivariant version [11, 5.2(b)] of the Seiberg–Witten invariant c...

متن کامل

Seiberg-Witten-Floer Theory for Homology 3-Spheres

We give the definition of the Seiberg-Witten-Floer homology group for a homology 3-sphere. Its Euler characteristic number is a Casson-type invariant. For a four-manifold with boundary a homology sphere, a relative Seiberg-Witten invariant is defined taking values in the Seiberg-Witten-Floer homology group, these relative Seiberg-Witten invariants are applied to certain homology spheres boundin...

متن کامل

Variants of Equivariant Seiberg-Witten Floer Homology

For a rational homology 3-sphere Y with a Spin structure s, we show that simple algebraic manipulations of our construction of equivariant Seiberg-Witten Floer homology in [5] lead to a collection of variants HF ∗,U(1)(Y, s), HF SW,∞ ∗,U(1) (Y, s) HF SW,+ ∗,U(1)(Y, s), ĤF SW ∗ (Y, s) and HF SW red,∗(Y, s) which are topological invariants. We establish a long exact sequence relating HF ∗,U(1)(Y,...

متن کامل

On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds

The main goal of the present article is the computation of the Heegaard Floer homology introduced by Ozsváth and Szabó for a family of plumbed rational homology 3–spheres. The main motivation is the study of the Seiberg–Witten type invariants of links of normal surface singularities. AMS Classification numbers Primary: 57M27, 57R57 Secondary: 14E15, 14B15, 14J17, 32S25, 32S45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008